
Global Identification with Gradient-Based Structural Estimation∗

Victor Duarte† Julia Fonseca‡

April 2024

Abstract

This paper develops a gradient-based optimization method to estimate stochastic dy-

namic models in economics and finance and assess identification globally. By extending

the state space to include all model parameters and approximating the mapping be-

tween parameters and moments, we only need to solve the model once to structurally

estimate parameters. We approximate the mapping between parameters and moments

by training a neural network on model-simulated data and then use this mapping to

find the set of parameters that minimizes a function of the distance between model

and data moments. We show how the mapping between parameters and moments can

also be used to assess identification globally, detecting issues that a local diagnostic

would miss. We illustrate the algorithm by solving and estimating a dynamic corporate

finance model with endogenous investment, costly equity issuance, and capital adjust-

ment costs. In this application, our method reduces the estimation time from many

hours to a few minutes.

∗We thank Diogo Duarte, Dan Green, Miles Kimball, Leonid Kogan, Jun Li, Adam McCloskey, Karel
Mertens, Jonathan Parker, Alessandro Perri, Alex Richter, Dejanir Silva, David Thesmar, Adrien Verdelhan,
Toni Whited, Mao Ye, and seminar participants at MIT, the NBER Summer Institute Big Data and High-
Performance Computing meeting, the Dallas Fed, Duke Fuqua, the University of Colorado Boulder, and
Wharton for helpful comments and discussions.

†Gies College of Business, University of Illinois Urbana-Champaign. Email: vduarte@illinois.edu
‡Gies College of Business, University of Illinois Urbana-Champaign. Email: juliaf@illinois.edu

1

mailto:vduarte@illinois.edu
mailto:juliaf@illinois.edu


1 Introduction

Structural estimation is a fundamental tool in many fields of economics and finance, from

macroeconomics and industrial organization to asset pricing and corporate finance. A struc-

tural estimation procedure typically conducts stochastic dynamic optimization and Monte

Carlo simulation to obtain model-implied moments for a given set of parameters in an in-

ner loop and minimizes a function of the distance between model and data moments in an

outer loop. This nested problem is computationally intensive for at least two reasons. First,

standard approaches solve a dynamic optimization problem for each set of model parameters

being evaluated in the outer loop. Moreover, the optimization algorithm used to minimize the

distance between the model-implied and data moments is oblivious to the mapping between

the model parameters and moments, which precludes the use of gradient-based optimization.

This paper proposes a new approach to structural estimation that circumvents these

two bottlenecks. Our method has three key components. First, we train a deep neural

network to approximate the value and policy function, augmenting the state space by treating

the model parameters as state variables. This makes it unnecessary to solve a complex

dynamic programming problem thousands of times. Second, a separate neural network

learns the mapping between moments and parameters—which we refer to as the moment

function—directly from simulated data. This eliminates the need to compute moments

for every given set of parameters and, because the network learns the mapping between

parameters and moments, the optimizer in the outer loop can explore this structure to

find the model parameters that minimize the corresponding loss function. Specifically, the

optimizer has access to analytical gradients and Hessian matrices of the loss function. Third,

we use the approximation of the moment function to estimate parameters by minimizing the

distance between data and model-implied moments.

In addition to making this efficient estimation algorithm possible, the mapping between

moments and parameters serves as the foundation for a global identification diagnostic. The

1



existence of this mapping makes it feasible to apply a global optimization routine to minimize

a function of the distance between model-implied and data moments, which serves as the

loss function in our estimation. To assess identification, we minimize this loss function for

all parameters but one and assess how it varies for the remaining parameter. This allows us

to verify whether a unique global minimum exists and matches our parameter estimate. By

optimizing relative to all other parameters rather than holding them fixed at their estimated

values, our approach accounts for the fact that perturbing the value of one parameter affects

estimates of other parameters. In our application, we show that this approach detects issues

that are missed when we hold all other parameters fixed at their estimated values.

We illustrate the method by applying it to a workhorse dynamic corporate finance model

with endogenous investment, costly equity issuance, and capital adjustment costs, similar to

Gomes (2001) and Hennessy and Whited (2007).

Literature review. The method we develop in this paper is closely related to Simulated

Method of Moments (SMM), which approximates model-implied moments using Monte Carlo

simulations for each set of parameters being evaluated (McFadden, 1989; Pakes and Pollard,

1989; Lee and Ingram, 1991; Duffie and Singleton, 1993). Our approach differs from SMM in

the method used to approximate the model-implied moments. Our method learns a mapping

between parameters and moments for an infinite set of parameters directly from simulated

observations. This subtle distinction has considerable implications for reducing computing

time, as it eliminates the need to solve the model multiple times to evaluate different sets of

parameters. This approach is closely related to indirect inference, which uses an auxiliary

model to approximate the likelihood (Gourieroux, Monfort, and Renault, 1993). Similarly,

Bazdresch, Kahn, and Whited (2017) develop an indirect inference estimation procedure

using the empirical policy function as the auxiliary model.

The idea of expanding the set of state variables to include model parameters in order to

facilitate estimation was first used in economics by Norets (2012), which proposes a method

2



using a single-layer neural network in the model solution and Markov chain Monte Carlo for

estimation. We contribute to this work by embedding a new solution method using deep

neural networks into an estimation procedure that also involves training a separate neural

network to approximate the mapping between model parameters and moments.

This work is also related to other papers that study the relationship between parameters

and moments to conduct sensitivity analysis. Closest to this paper, Duarte, Duarte, and

Silva (2023a) develops a solution method that involves expanding the state space to include

model parameters so that, once a solution is obtained, one can easily compute moments for

a range of parameter values and assess sensitivity. We contribute to this work by embedding

this solution method in an efficient estimation procedure. Specifically, we approximate the

mapping between parameters and moments and use it both for estimation and for a global

identification diagnostic. We also extend the solution method in Duarte, Duarte, and Silva

(2023a) in two key ways. First, we adapt this continuous-time method to a discrete-time

setting. Second, we develop an iterative algorithm that focuses on the relevant range of

the parameter space as training progresses, allowing us to more quickly obtain an accurate

solution for this range.

Andrews, Gentzkow, and Shapiro (2017) proposes a local linear approximation of the

mapping between parameters and moments that is used to assess the sensitivity of estimates

to misspecification, but not directly in the estimation procedure. Catherine et al. (2023)

uses model-implied moments obtained from multiple solutions of a dynamic optimization

problem to approximate the moment function, which is then used to estimate parameters

and conduct robustness checks. They use their estimate of the moment function to generalize

the local approximation of Andrews, Gentzkow, and Shapiro (2017) by computing moments

across the full range of possible values for one parameter, while fixing other parameters at

their estimated values. Their method differs from traditional methods in that the model is

solved multiple times to approximate the moment function instead of at each of the multiple

3



iteration steps used to estimate parameters in traditional methods.

Our approach differs from these works in two important ways. First, we expand the set

of state variables to include all model parameters, altogether eliminating the need to solve

the model multiple times at any step of the estimation procedure. Second, our approach

allows us to assess identification globally, without holding any parameters fixed, to determine

whether the econometric objective function has a unique global minimum. In our application,

we show that our global approach can detect issues that are missed when we hold parameters

fixed at their estimated values.

This paper is also related to a growing literature using machine learning tools to solve

dynamic optimization problems, including Duarte, Duarte, and Silva (2023a), Scheidegger

and Bilionis (2019), Maliar, Maliar, and Winant (2021), Azinovic, Gaegauf, and Scheidegger

(2022), and Duarte et al. (2023b). We relate to this literature as we also propose a method to

solve dynamic optimization problems—which extends the continuous-time method proposed

by Duarte, Duarte, and Silva (2023a) to discrete-time problems—and embed it in a fast

and efficient estimation procedure. Although we focus on one particular solution method, in

principle, our estimation procedure could be extended to incorporate any method capable of

handling a large enough number of state variables so that model parameters can be included

as states.

Finally, since we apply this method to a dynamic corporate finance model, we also relate

to a rich literature that structurally estimates corporate finance models.1

The rest of the paper is organized as follows. Section 2 described the main blocks of

computations required by our method. Section 3 describes how we combine these blocks

of computations into our algorithm. Section 5 applies this method to a dynamic corporate

finance model. Section 6 concludes.

1See Strebulaev and Whited (2012) for a survey of this literature.

4



2 Methodology

This section explains our methodology and, in it, we assume knowledge of common machine

learning concepts such as neural networks. See Duarte, Duarte, and Silva (2023a) for a

brief explanation of these concepts or Sutton and Barto (1998) and Goodfellow, Bengio, and

Courville (2016) for a textbook treatment.

Our methodology consists of performing three blocks of computations iteratively. In

the first block, taking as input a distribution of model parameters and state variables, we

train deep neural networks to approximate the value and policy functions as functions of

both states and parameters. In the second block, we use the policy function approximation

and a distribution of parameters to simulate data. In the third block, we use simulated

data to train a neural network to approximate the mapping between model parameters and

moments, which we call the moment function. We then use the moment function to estimate

model parameters. This section details each of the three blocks and, in Section 3, we describe

how our algorithm proceeds iteratively across the three blocks.

2.1 Block 1: Policy iteration

Our procedure for approximating the value and policy functions extends the method of

Duarte, Duarte, and Silva (2023a) to discrete-time problems. A key feature of this approach

is that, instead of learning the value function for one particular set of parameters, we train a

deep neural network to approximate the value function as a function of parameters as well as

state variables. This means that we compute value functions for every possible combination

of parameters in a given (infinite) set. In machine learning, the value function as a function

of parameters and state variables is known as a universal value function.

Expanding the set of state variables to include model parameters will typically lead to

a substantial increase in the state space. For instance, in the application of Section 5, we

add five parameters to two state variables, increasing the dimension of the state space from

5



two to seven. Solving this problem thus requires an algorithm that can handle relatively

large state spaces, which will generally preclude the use of traditional grid-based methods

and polynomial approximations. Note that there are many methods for solving dynamic

optimization problems with large state spaces, including ones that use machine learning

tools to do so.2 In principle, any of those algorithms could replace the procedure we describe

in this subsection, as long as they can accommodate an expansion of the set of state variables

to include model parameters.

Our approach is to use neural networks to approximate the value and policy functions

in a policy iteration algorithm that iterates over two steps that separately train the value

function and the policy function, respectively, until a pre-specified stopping criterion is met.

Policy iteration algorithms start from an arbitrary guess of the policy function and then

iterate between (1) estimating the corresponding value function and (2) using the estimated

value function to construct a new estimate of the policy function. This class of algorithms

typically refers to the first step as policy evaluation and to the second step as policy im-

provement (e.g. Sutton and Barto, 2018). In what follows, we describe each of the two steps

in turn.

2.11 Policy evaluation step

Let u and π denote the utility function and the policy function, respectively. Let Vπ denote

the value function associated with π. 3 We can write the Bellman equation generally as

Vπ(Ξ) = u(Ξ, π(Ξ)) + βEVπ(Ξ
′), (1)

2See, for instance, Scheidegger and Bilionis (2019), Maliar, Maliar, and Winant (2021), Azinovic, Gaegauf,
and Scheidegger (2022), and Duarte et al. (2023b).

3Note that Vπ is not what we typically refer to as the value function. The latter is the value function
resulting from following the optimal policy function. The former is the expected sum of discounted utility
resulting from following a given policy function π. Naturally, the two will be the same if the π is the optimal
policy.

6



where Ξ denotes the expanded state space that includes state variables and model parame-

ters.

We use a deep neural network to parametrize the value function as

Vπ(Ξ) ≡ Vπ(Ξ;ΘV ), (2)

where ΘV is the collection of parameters of the neural networks representing the value

function. Assume that the vector of next period states Ξ′ is a function of the current state

Ξ and a vector of shocks ϵ ∈ Rn, so that Ξ′ = f(Ξ, ϵ). In order to compute the expectation

in Eq. (1), we take a 2nd order Taylor expansion around ϵ = 0. Specifically, we use that

EVπ(Ξ
′) = EVπ(f(Ξ, ϵ)) ≈ V (f(Ξ, 0)) +

1

2

n∑
i=1

∂2

∂ϵi2
V (f(Ξ, 0)) (3)

where n is the number of shocks. This is a parallel with the continuous-time method of

Duarte, Duarte, and Silva (2023a) that uses that, in continuous time, the approximation

given by Eq. (3) is exact.

For a given policy function π, we obtain the implied value function by adjusting network

parameters ΘV to minimize the difference between the left-hand side and the right-hand side

of Eq. (1). Specifically, we define the mean squared error as a function of ΘV as

MSE(ΘV ) = E
[
(Vπ(Ξ;ΘV )− U(Ξ, π(Ξ))− βEVπ(Ξ

′; ΘV ))
2
]
, (4)

approximating EVπ(Ξ
′; ΘV ) using Eq. (3). This is a standard supervised learning problem

and can be solved with stochastic gradient descent (i.e. Goodfellow, Bengio, and Courville,

2016). Starting from a random initial guess of the parameter vector ΘV , a standard (naive)

gradient descent algorithm would update the network by changing its parameters in the

7



direction that most quickly reduces the loss function. The loss function, in this case, is given

by the above mean squared error, and one step of gradient descent consists of

∆ΘV = −α∇ΘV
MSE(ΘV ) = −α∇ΘV

E [(Vπ(Ξ;ΘV )− U(Ξ, π(Ξ))− βEVπ(Ξ
′; ΘV ))] , (5)

where α is the learning rate. The insight of stochastic gradient descent algorithms is to

circumvent the computationally costly step of computing the expectation in Eq. (5) by

approximating this expectation by drawing an i.i.d. sample of states of size N , with N

known in machine learning as the batch size. Note that, since parameters are included as

part of the state space, this i.i.d. sample is a sample of both state variables and parameters.

We sample from the parameter space by assuming a distribution for parameters, which we

describe in more detail in Section 3. We then approximate the mean squared error as

M̂SE(ΘV ) =
1

N

N∑
i=1

(Vπ(Ξi; ΘV )− U(Ξi, π(Ξ))− βEVπ(Ξ
′
i; ΘV ))

2
, (6)

One step of stochastic gradient descent adjusts ΘV by

∆ΘV = −α∇ΘV
M̂SE(ΘV ) (7)

We update the network by performing one step of stochastic gradient descent and ad-

vance to the policy improvement step.

2.12 Policy improvement step

Given the value function Vπ, we would like to obtain a new estimate of the policy function

π as

8



π(Ξ) = argmax
a

{u(Ξ, a) + βEVπ(Ξ
′)} (8)

This optimization problem is generally computationally costly. Instead of computing the

exact maximum to the problem in Eq. (8), we start by using a neural network to parametrize

the policy function as

π(Ξ) ≡ π(Ξ;Θπ), (9)

where Θπ denotes the collection of parameters of the neural network representing the policy

function, and optimize with respect to Θπ.

Plugging the approximation in Eq. (9) into the optimization problem in Eq. (8) yields

π(Ξ) = argmax
Θπ

{u(Ξ, π(Ξ;Θπ)) + βEVπ(Ξ
′)} (10)

Instead of performing the maximization above exactly at each iteration, we adjust the

parameters vector Θπ gradually using stochastic gradient descent. Specifically, we draw an

i.i.d. sample of states and parameters of batch size N and compute the mean of the right-

hand side of Eq. (10) across the observations in this sample. To re-frame our optimization

as a minimization problem, we define the loss function as the negative of this mean

L̂(Θπ) = − 1

N

N∑
i=1

(u(Ξi, π(Ξi; Θπ)) + βEVπ(Ξ
′
i)) , (11)

where EVπ(Ξ
′
i) is computed using the approximation in Eq. (3). We adjust the parameters

of the policy function network by performing one step of stochastic gradient descent.

9



∆Θπ = −α∇πL̂(Θπ) (12)

2.2 Block 2: Simulation

The computations performed in this block are conceptually simple but computationally

intensive, which explains why we separate them from the other two blocks. Our goal is

to construct a dataset to use in our estimation procedure. To do so, we draw a sample of

parameters of size Nd from the parameter distribution. For each vector of parameters in this

sample, we use the approximation of the policy function obtained in Block 1 to simulate the

model and then compute simulated moments of the vector of variables of interest Y .

2.3 Block 3: Estimation

In this section, we explain how we use the dataset described in Section 2.2 to train a separate

neural network to approximate the mapping between model parameters and moments, which

we refer to as the moment function. We then describe how we use the moment function for

estimation.

Let β be the vector of the stacked parameters of a given dynamic model and Y a variable

of interest. We are interested in learning the function

g(β) ≡ E[Y |β]. (13)

Note that g satisfies

g(β) = argmin
f

{
E (Y − f(β))2

}
. (14)

We search for a neural network g(β; Θg) that approximately solves Eq. (14), that is:

10



Θ∗
g = argmin

Θg

{L(Θg)} , (15)

where Θg are the parameters of network g(β; Θg) and the loss function L(Θg) is given by

L(Θg) = E (Y − g(β; Θg))
2 , (16)

We draw an i.i.d sample of pairs {βi, Yi}Ni=1 of batch size N from the dataset constructed

in Block 2, consisting of random draws of the parameter vector β and simulated moments

of the variable of interest Y . Substituting the population mean with the sample mean, we

obtain

Θ∗
g ≈ argmin

Θg

{
1

2N

N∑
i=1

(Yi − g(βi; Θg))
2

}
(17)

As before, this optimization can be done with stochastic gradient descent. Once training

is complete, the network g(β; Θg) has learned a differentiable mapping between parameters

and the moments of interest. This has two major implications for structural estimation.

First, it is a fast way to evaluate moments for different sets of parameters. Second, we

can explore the structure of this mapping to search for parameters using the procedure we

describe next.

We use an optimizer to find the global minimum of:

d(β) ≡ (ĝ − g(β))′ W (ĝ − g(β)) (18)

where ĝ are the data moments, g(β) is the output of the moments network, and W

is a positive definite weighting matrix. We use as our weighting matrix the inverse of the

moment variance-covariance matrix. Following the approach of Erickson and Whited (2002),

11



we stack the influence functions for all moments and covary them to compute the moment

variance-covariance matrix. This choice of weighting matrix has been shown to result in

better finite sample performance (Bazdresch, Kahn, and Whited, 2017).

We use a Levenberg-Marquardt algorithm with multiple initial conditions. Levenberg-

Marquardt combines gradient descent with a Gauss-Newton algorithm, acting more like

gradient descent when far from the solution and more like Gauss-Newton near the solution.

Note that it is only possible to use an efficient gradient-based algorithm like Levenberg-

Marquardt in this block of computations because we obtain the analytical Jacobian of the

moment function from the moment function approximation.

3 Algorithm

In this section, we describe how we combine the two blocks of computations described in

Section 2 into our algorithm. This algorithm is asynchronous, as one block of computations

does not depend on the completion of the other, and lends itself well to parallelization. We

perform all computations on a computer with three NVIDIA V100 Tensor Core GPUs and

parallelize this algorithm across the three GPUs. We provide an illustration of the algorithm

and this suggested approach to parallelization in Figure 1.

Initialization. We initialize the parameters of the respective networks that approximate

the value, policy, and moment functions randomly. To initialize our algorithm, we also need

a distribution of parameters and a table containing a sample of size Nr of parameters and

state variables, known in machine learning as the replay buffer. We use as the distribution

of parameters a sigmoid transformation of a normal distribution.4 Specifically, for each

parameter βj, we select upper and lower bounds βj and β
j
and set

4This transformation is similar to the more commonly used beta distribution, but sampling from a normal
distribution and applying a sigmoid transformation is less computationally intensive than sampling from a
beta distribution.

12



βj = βj + (β
j − βj)σ(µj + σjεj), (19)

where σ is the sigmoid function, µj and σj are the mean and standard deviation of the

normal distribution and εj ∼ N (0, 1).

We initialize the distribution of each parameter βj with µj = 0 and σj = 1.5, which

results in distributions that approximate a uniform. We sample from these distributions

and add this sample of parameters to the initial replay buffer. The sample in the replay

buffer is hierarchical, and each observation for the vector of parameters is associated with

an observation for the set of state variables. For each vector of parameters in the sample, we

select upper and lower bounds for each state variable and sample from a uniform distribution.

This hierarchical sampling framework allows us to focus on the relevant region of the state

space.

Block 1: Policy Iteration. The policy iteration block of computations is performed

continuously by one of the GPUs. This block takes as inputs the distribution of parameters

and the replay buffer, and outputs approximations of the policy and value functions as well

as a new replay buffer. This block of computations proceeds as follows:

Step 1.1: We start by reading a distribution of parameters. We then obtain a sample

of state variables and parameters of batch size N by sampling 0.5N from the replay

buffer and 0.5N from the procedure described in the initialization step. Specifically, we

sample from the parameter distribution, select bounds for state variables for each vector

of parameters in the sample, and sample state variables from a uniform distribution.

Step 1.2: Given a sample of state variables and parameters, we train the neural

network that approximates the value function as a function of model parameters and

states as described in Section 2.1. We iterate between one step of stochastic gradient

descent in the policy evaluation step and one step of stochastic gradient descent in the

13



policy improvement step for a pre-specified number of iterations, which we denote as

an epoch. We replace the old approximations of the policy and value function with the

ones produced in this step.

Step 1.3: We update the replay buffer. To do so, we obtain a sample of parameters of

size equal to 10% of the replay buffer size, or 0.1Nr, and use the policy approximation

obtained in Step 1.2 to simulate values of state variables for each value of the vector of

parameters in this sample. We sample 0.75(0.1Nr) from the parameter distribution and

0.25(0.1Nr) from the initial distribution with mean zero and standard deviation 1.5,

which approximates a uniform distribution. We discard 10% of the oldest observations

in the replay buffer and replace it with the sample obtained in this step. We then

return to step 1.1 and proceed iteratively until a criterion is met.

Block 2: Simulation. The simulation block of computations is performed continuously

in a second GPU. This block takes as inputs the distribution of parameters and a neural

network approximating the policy function, and outputs a dataset with random draws of

the parameter vector and simulated moments of the variable of interest. This block of

computations proceeds as follows:

Step 2.1: Given the parameter distribution, we draw an i.i.d. sample of parameters

of size Nd.

Step 2.2: For each vector of parameters in this sample, we use the approximation

of the policy function to simulate the model and then compute simulated moments

of the vector of variables of interest Y , producing a dataset with parameter vectors

and simulated moments. We then return to step 2.1 and proceed iteratively until a

criterion is met.

Block 3: Estimation. The estimation block of computations is performed in a third

GPU. This block takes as inputs a dataset with random draws of the parameter vector and

14



simulated moments of the variable of interest and outputs new distributions of parameters

and a neural network approximating the moment function. This block of computations

proceeds as follows:

Step 3.1: We draw a small i.i.d. sample of parameters and states of batch size N

from the dataset constructed in Block 2.

Step 3.2: Given a sample of parameters and states, we train the neural network that

approximates the moment function as described in Section 2.3 for one epoch.

Step 3.3: To update the standard deviation of the parameter distribution in Step 3.5

below, we keep a total of four versions of the moment function: the moment function

obtained in step 3.2 in the current iteration plus the moment functions from the three

previous iterations. We use this as our approach to obtain numerical standard errors

because it reduces the value of standard errors, and thus samples from a narrower

range of the parameter distribution, as the solution converges and all versions of the

moment function approximation become increasingly similar. An alternative that is

simpler to implement is to anneal the standard deviation of the parameter distribution

to a small number during training.

Step 3.4: For each moment function approximation, we define the distance function

given by Eq. (18). We then use a Levenberg-Marquardt optimization routine with

multiple initial conditions to find the vector of parameters that minimizes the distance

function as described in Section 2.3 for one epoch. This produces a total of four

estimates of the vector of parameters, one for each moment function approximation.

Step 3.5: To ensure that our algorithm focuses on the relevant subset of the parameter

space, we update the mean and standard deviation of the parameter distribution.

For each parameter, we replace the mean and standard deviation with the mean and

standard deviation of the four parameter estimates obtained in Step 3.4. Again, an

15



alternative for researchers who prefer to have a single moment function and skip step

3.3 is to replace the mean with a single parameter estimate and anneal the standard

deviation during training. After updating the mean and standard deviation, we return

to step 3.1 and proceed iteratively until a criterion is met.

4 Global identification diagnostic

In addition to producing a model solution and parameter estimates, the algorithm in Section

3 produces a mapping between moment and parameters. With this moment function on

hand, it is as if we have the mapping between parameters and moments in closed form. It

is then simple and computationally cheap to assess how the distance function from Eq. (18)

varies with each parameter.

To evaluate if parameter βj is identified, we minimize the distance function in Eq. (18)

across all other parameters to obtain a “minimum loss function” as a function of βj, L(βj).

By minimizing the distance function with respect to all other parameters instead of fixing

them at their estimated values, this procedure accounts for the fact that changing the value

of one parameter can change the optimal value of other parameters. Specifically, we solve

L(βj) = min
β−j

d(βj,β−j) ≡
(
ĝ − g(βj,β−j)

)′
W

(
ĝ − g(βj,β−j)

)
, (20)

where β−j denotes the vector of all parameters other than βj. We approximate g(β) using

the network g(β; Θg) obtained using the algorithm in Section 3 above. As before, we use

the inverse of the moment variance-covariance matrix as our weighting matrix and solve the

minimization problem in Eq. 20 using the Levenberg-Marquardt algorithm with multiple

initial conditions.

16



We then plot the minimum loss function L(βj) as a function of βj and check whether

it has a unique global minimum and, if so, we conclude that βj is identified by the set of

moments used in the estimation procedure. We show examples of this approach to assessing

identification in Section 5.

5 Application: A dynamic corporate finance model

In this section, we apply our method to a workhorse corporate finance model similar to

Gomes (2001) and Hennessy and Whited (2007). After describing the model environment,

we start by showing that our method can recover known parameters and illustrating our

global identification diagnostic. Next, we estimate the model using Compustat data and

compare the performance of our method with the more common approach of combining value

function iteration with a gradient-free global optimization method. Finally, we show that

our global identification diagnostic can detect a limitation in our estimation with Compustat

data that a local diagnostic would miss.

5.1 Model description

Time is discrete. An infinitely-lived firm chooses investment to maximize the expected

present value of distributions to shareholders and is subject to investment adjustment costs

and costly equity issuance. The firm uses capital in a decreasing-returns technology that

generates operating income Yt according to

Yt = ztK
α
t , (21)

where α ∈ (0, 1) governs the degree of returns to scale, zt is a productivity shock, and Kt is

the stock of capital. The productivity shock zt is log-normally distributed and follows

17



log(zt) = ρ log(zt−1) + εt, where εt ∼ N (0, σz) (22)

The firm chooses investment It each period and capital accumulation follows

Kt+1 = (1− δ)Kt + It, (23)

where δ is the depreciation rate. Cash flows E(Kt, Kt+1, zt) are given by

E(Kt, Kt+1, zt) = ztK
α
t −Kt+1 + (1− δ)Kt −

χI2t
2

(24)

The term
χI2t
2

introduces a convex capital adjustment cost. Positive cash flows are

distributed to shareholders while negative cash flows imply that the firm issues equity, which

is subject to a linear cost λ > 0. Distributions to shareholders D(Kt, Kt+1, zt) are thus given

by

D(Kt, Kt+1, zt) =


E(Kt, Kt+1, zt), if E(Kt, Kt+1, zt) ≥ 0

(1 + λ)E(Kt, Kt+1, zt), if E(Kt, Kt+1, zt) < 0

(25)

The firm solves

V (Kt, zt) = max
Kt+1

{D(Kt, Kt+1, zt) + βEV (Kt+1, zt+1)} (26)

subject to Eq. (25) and the law of motion of the productivity shock (Eq. (22)) and capital

(Eq. (23)).

18



5.2 Recovering known parameters

To assess the performance of our method, we start by showing the results of an exercise

in which the true parameter values are known. To do so, we solve the model using value

function iteration for a given set of parameters, use this solution to produce simulated data,

use simulated data to compute moments, and then use the algorithm described in Section 3

to solve and estimate the model targeting these moments. The advantage of this exercise is

that we know the true parameters that generated the underlying data and thus can assess

the ability of our method to recover the correct parameters.

We repeat this exercise multiple times to ensure that our method performs well across

the parameter space. We draw 1,000 parameter vectors from a uniform distribution and

discard those in which the implied equity issuance is lower than 0.01.5 For each parameter

vector in this set, we solve the model using value function iteration, simulate data using the

policy functions, compute the above moments in each of the model-generated datasets, and

estimate the model using our method.

We estimate five parameters: the rate of depreciation δ, the curvature of the profit

function α, the cost of equity issuance λ, the auto-correlation of the productivity shock

ρ, and the innovation of the productivity shock process σz. We target five moments: the

average investment rate It
Kt
, the average profitability rate Yt

Kt
, the average equity issuance

min{E(Kt,Kt+1,zt),0}
Kt

, the auto-correlation of Yt

Kt
(computed by regressing Yt

Kt
on Yt−1

Kt−1
), and the

standard deviation of the residuals of this regression. We fix the values of the remaining

parameters, setting β to 0.98 and the capital adjustment cost χ to 0.03.

We choose the following bounds for each of the five parameters: δ ∈ [0.02, 0.12], α ∈

[0.3, 0.6], λ ∈ [0.0, 0.3], ρ ∈ [0.5, 0.9], σz ∈ [0.05, 0.6]. As we describe in Section 3, the

sample in the replay buffer is hierarchical, meaning that each observation for the vector of

5For very low levels of equity issuance, the equity issuance cost is not identified.

19



parameters is associated with an observation for the set of state variables. For each vector

of parameters the sample of parameters, we select upper and lower bounds for productivity

using a Tauchen approximation as

log z = 4
σz

1− ρ2
(27)

log z = − 4
σz

1− ρ2
(28)

To set bounds for capital, we start by computing the steady state level of capital as

Kss =

(
αβ

1− (1− δ)β

) 1
1−α

(29)

We then define the upper and lower bound for capital as

logK = logKss + z (30)

logK = logKss + z (31)

We start by showing that the moment function we estimate is an accurate representation

of the true moments. In Fig. 2, we show scatter plots of data moments and moments implied

by the moment function, with each panel representing a different moment. The x-axis of

each panel represents the data moments implied by each of the parameter vectors that we

randomly draw and the y-axis represents the moments obtained by applying the moment

network to the same set of parameter vectors. We also report the 45-degree line in solid

black so that, if the fit between data moments and those implied by the moment function

were perfect, all dots should lie on that line. We can see that the fit is remarkably good,

20



with an R2 of 1 across all parameters.

The close fit of the moment function is important since errors in moment conditions

would pose challenges for estimating parameters. Fortunately, neural networks are flexible

function approximators and can approximate even non-linear functions. Moreover, the iter-

ative algorithm of Section 3 focuses attention on the relevant parameter range as training

progresses, which also leads to a better approximation of the moment function in that range.

Next, we show that we also obtain a close fit of the true parameters. In Fig. 3, we show

scatter plots of the true parameters and the parameters obtained in our estimation, with

each panel representing a different parameter. In each panel, the x-axis is the set of randomly

drawn parameters and the y-axis is the set of parameter estimates, with the 45-degree line

shown in black. Our parameter estimates are also a close fit to the true parameters, with

R2s ranging from 0.99 to 1.

5.3 Minimum loss functions: Assessing identification

Next, we show how to use the mapping between parameters and moments to assess identifi-

cation globally. After solving and estimating the model for each randomly drawn vector of

true parameters in Section 5.2, we use a Levenberg-Marquardt algorithm with multiple ini-

tial conditions to minimize the loss function given by Eq. (18), the distance between model

and data moments, for all parameters but one. This gives us the global minimum of the loss

function as a function of a parameter, allowing us to check whether a global minimum exists.

If there is not a unique global minimum, this suggests that the parameter is not identified

by this set of moments. We repeat this exercise for all five parameters.

We illustrate the usefulness of this approach by showing that the parameters in this

model are identified by this set of moments for some true parameter values but not for

others. In Fig. 4, we plot the minimum loss function as a function of productivity innovation

σz (Panels 4a and 4c) and equity issuance cost λ (Panels 4b and 4d) for two different

21



true parameter vectors. In version 1 (Panels 4a and 4b), the true parameter vector is

[α, δ, λ, ρ, σz] = [0.484, 0.110, 0.040, 0.635, 0.370]. In version 2 (Panels 4c and 4d), the

true parameter vector is [α, δ, λ, ρ, σz] = [0.362, 0.106, 0.095, 0.846, 0.140]. The red

vertical line denotes the true parameter value.

In this model, σz seems to be identified by this set of moments across the true parameter

space. We illustrate this in Panel 4a and 4c, which shows that the minimum loss function

for σz has a global minimum for the two different vectors of true parameters.

In contrast, λ is identified by this set of moments for some vectors of true parameters,

but not for others. In Panel 4b, the minimum loss function has a unique global mini-

mum, suggesting λ is identified by this set of moments when the true parameter vector is

[α, δ, λ, ρ, σz] = [0.484, 0.110, 0.040, 0.635, 0.370]. However, the same is not true in Panel

4d, when the true parameter vector is [α, δ, λ, ρ, σz] = [0.362, 0.106, 0.095, 0.846, 0.140].

In this case, the minimum loss function is essentially flat, suggesting λ is not identified.

5.4 Estimation using Compustat data

Finally, we use data from Compustat between 1970 and 2019 to construct data moments

and use the algorithm of Section 3 to estimate the model targeting these moments.

5.41 Data construction

We exclude firms in the financial (SIC code 6) and regulated sectors (SIC code 49), as well

as quasi-governmental firms (SIC code 9). We exclude all observations that have missing

data in any of the variables that we use in our analysis. We also exclude observations in

which total assets are less than 10 million dollars, in which sales or assets increase more than

200%, and those with negative sales. Finally, we exclude firms that have fewer than four

consecutive observations.

We construct variables as:

22



1. investment-to-asset ratio = capx
l.at

2. profit-to-asset ratio = oibdp
l.at

3. equity-issuance-to-asset ratio (computed net of repurchases) = sstk−prstkc
l.at

We winsorize all ratios at the 1st and 99th percentiles. Because firms in this model are

ex-ante homogeneous, we remove firm fixed effects from these variables by subtracting the

within-firm average. Removing firm fixed effects implies that all variables will have a mean of

zero, and so we add back the sample average. To compute the autocorrelation of the profit-

to-asset ratio, we regress the profit-to-asset ratio on its lag and include year fixed effects. As

a separate targeted moment, we also compute the standard deviation of the residuals of this

regression.

5.42 Estimation results

We estimate the model using the algorithm described in Section 3. We start by illustrating

our endogenous sampling framework for two parameters in Fig. 5. The y-axis corresponds to

values of the equity issuance cost λ and the x-axis has values of the productivity innovation

σz. Each panel shows a different sample and each blue dot corresponds to an observation in

the sample, with estimated parameter values shown in orange. Panel 5a shows the sample

from uniform distributions that we obtain during the initialization step described in Section

3. Panel 5b shows the final sample that we obtain after running the algorithm for 15 minutes.

As we describe in Section 3, our algorithm updates the mean and standard deviation of the

parameter vector during training and samples 75% of observations from that distribution.

This allows us to quickly obtain a high-quality solution in the region of the parameter space

around the parameter estimates.

Next, we show the results of our estimation in Tables 1 and 2. As shown in Table 1,

our method does a very good job of matching the data moments. Table 2 reports parameter

estimates, with standard errors in parentheses computed following the influence function

23



approach of Erickson and Whited (2002). We obtain precise estimates of all parameters.

We also compare our algorithm against the more standard approach of solving the

model using value function iteration and estimating parameters with a gradient-free global

optimization method—differential evolution—targeting the same data moments. We report

the estimates obtained with this approach in the last row of Table 2. For all parameters

but one, the estimate we obtain with the standard approach falls within the 95% confidence

interval for our estimate. The one exception is α, the curvature of the profit function, for

which the estimate we obtain with the standard approach is just outside the confidence

interval for our method. As we discuss in Section 5.43 below, this is potentially a reflection

of our choice of moments, which do not identify this parameter as well as others.

In Fig. 6, we also report parameter estimates over the run time using our method and

the standard approach. Each panel refers to a different parameter and, across all panels,

the x-axis is run time in minutes and the y-axis shows estimated parameter values obtained

with our method (blue line) and value function iteration plus differential evolution (orange

line). For each method, we run the algorithm five times with different seeds and different

random initial conditions. The solid lines show the average parameter estimate over time

for each method and the bands correspond to plus or minus one standard deviation. We run

our method for 30 minutes and differential evolution for 10 hours. For all parameters, we

can see that our algorithm converges in a very small fraction of the time that it takes the

standard approach to reach a similar estimate.

5.43 Global identification

Next, we illustrate our global identification diagnostic in the context of the estimation using

Compustat data and show that it can detect a limitation that a local diagnostic would miss.

As in Section 5.3 we start by solving and estimating the model targeting the data moments

and then use a Levenberg-Marquardt algorithm with multiple initial conditions to minimize

24



the loss function given by Eq. (18), the distance between model and data moments, for all

parameters but one. We show minimum loss functions for all five parameters in Fig. 7.

In panel 7a, we see that the minimum loss function is relatively flat for α, the curvature

of the profit function. This is a likely explanation for why we obtain larger differences in

estimates of this parameter across different estimation procedures than in other parameters.

The change in the minimum loss function from going from our estimate of 0.428 to the 0.423

estimate we obtain with differential evolution (Table 2) is of the order of 1e−7, suggesting

that even very small numerical error would be sufficient to confound estimates within this

range.

Finally, we use this example to demonstrate the usefulness of a global diagnostic that

minimizes the distance between data and model-implied moments for all parameters but one

by comparing these results with the more common approach of holding all parameter values

but one fixed at their estimated values. Fig. 8 shows the same minimum loss functions as in

Fig. 7 in blue and, in orange, shows the distance between data and model-implied moments

when we vary the parameter denoted in the figure caption and hold all other parameters

fixed at their estimated value. Based on this local approach, we would conclude that all

parameters are identified by this set of moments and would not detect the challenge to

identifying the curvature of the profit function.

6 Conclusion

We propose a gradient-based optimization method to efficiently estimate stochastic dynamic

models by expanding the set of state variables to include all model parameters and ap-

proximating the mapping between parameters and model-implied moments directly from

simulated observations. After a moment network is trained on a data set composed of sim-

ulated observations, optimization can be carried out as if we had the estimating equations

in closed form. Essentially, we propose a way to make SMM as tractable as GMM. We also

25



show how to use moment networks to globally assess identification by computing global loss

functions.

We illustrate our approach by solving and estimating a dynamic corporate finance model

with endogenous investment, costly equity issuance, and capital adjustment costs. The

expanded state space includes two state variables and five model parameters. We solve

the model for an infinite set of parameters and obtain precise parameter estimates in 15

minutes. Finally, we show that our global identification diagnostic can detect issues that

local diagnostics would miss.

26



References

Andrews, Isaiah, Matthew Gentzkow, and Jesse M. Shapiro. Measuring the sensitivity of

parameter estimates to estimation moments. The Quarterly Journal of Economics, 132

(4):1553–1592, 06 2017. ISSN 0033-5533. doi: 10.1093/qje/qjx023. URL https://doi.

org/10.1093/qje/qjx023.

Azinovic, Marlon, Luca Gaegauf, and Simon Scheidegger. Deep equilibrium nets. Interna-

tional Economic Review, 63(4):1471–1525, 2022. doi: https://doi.org/10.1111/iere.12575.

URL https://onlinelibrary.wiley.com/doi/abs/10.1111/iere.12575.

Bazdresch, Santiago, R. Jay Kahn, and Toni M. Whited. Estimating and testing dynamic

corporate finance models. The Review of Financial Studies, 31(1):322–361, 07 2017. ISSN

0893-9454. doi: 10.1093/rfs/hhx080. URL https://doi.org/10.1093/rfs/hhx080.

Catherine, Sylvain, Mehran Ebrahimian, David Sraer, and David Thesmar. Robustness

checks in structural analysis. Technical report, Working paper, 2023.

Duarte, Victor, Diogo Duarte, and Dejanir Silva. Machine learning for continuous-time

finance. SSRN, 2023a. URL https://ssrn.com/abstract=3012602.

Duarte, Victor, Julia Fonseca, Aaron Goodman, and Jonathan Parker. Simple allocation

rules and optimal portfolio choice over the lifecycle. Technical report, Working paper,

2023b.

Duffie, Darrell, and Kenneth J. Singleton. Simulated moments estimation of markov models

of asset prices. Econometrica, 61(4):929–952, 1993. ISSN 00129682, 14680262. URL

http://www.jstor.org/stable/2951768.

Erickson, Timothy, and Toni M. Whited. Two-step GMM estimation of the errors-in-

variables model using high-order moments. Econometric Theory, 18(3):776–799, 2002.

ISSN 02664666, 14694360. URL http://www.jstor.org/stable/3533649.

27

https://doi.org/10.1093/qje/qjx023
https://doi.org/10.1093/qje/qjx023
https://onlinelibrary.wiley.com/doi/abs/10.1111/iere.12575
https://doi.org/10.1093/rfs/hhx080
https://ssrn.com/abstract=3012602
http://www.jstor.org/stable/2951768
http://www.jstor.org/stable/3533649


Gomes, Joao F. Financing investment. American Economic Review, 91(5):1263–1285, De-

cember 2001. doi: 10.1257/aer.91.5.1263. URL https://www.aeaweb.org/articles?id=

10.1257/aer.91.5.1263.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Gourieroux, C., A. Monfort, and E. Renault. Indirect inference. Journal of Applied Econo-

metrics, 8:S85–S118, 1993. ISSN 08837252, 10991255. URL http://www.jstor.org/

stable/2285076.

Hennessy, Christopher A., and Toni M. Whited. How costly is external financing? evidence

from a structural estimation. The Journal of Finance, 62(4):1705–1745, 2007. ISSN

00221082, 15406261. URL http://www.jstor.org/stable/4622315.

Lee, Bong-Soo, and Beth Ingram. Simulation estimation of time-series models. Journal

of Econometrics, 47(2-3):197–205, 1991. URL https://EconPapers.repec.org/RePEc:

eee:econom:v:47:y:1991:i:2-3:p:197-205.

Maliar, Lilia, Serguei Maliar, and Pablo Winant. Deep learning for solving dynamic eco-

nomic models. Journal of Monetary Economics, 122:76–101, 2021. ISSN 0304-3932. doi:

https://doi.org/10.1016/j.jmoneco.2021.07.004. URL https://www.sciencedirect.com/

science/article/pii/S0304393221000799.

McFadden, Daniel. A method of simulated moments for estimation of discrete response mod-

els without numerical integration. Econometrica, 57(5):995–1026, 1989. ISSN 00129682,

14680262. URL http://www.jstor.org/stable/1913621.

Norets, Andriy. Estimation of dynamic discrete choice models using artificial neural network

approximations. Econometric Reviews, 31(1):84–106, 2012. doi: 10.1080/07474938.2011.

607089. URL http://dx.doi.org/10.1080/07474938.2011.607089.

Pakes, Ariel, and David Pollard. Simulation and the asymptotics of optimization estimators.

28

https://www.aeaweb.org/articles?id=10.1257/aer.91.5.1263
https://www.aeaweb.org/articles?id=10.1257/aer.91.5.1263
http://www.jstor.org/stable/2285076
http://www.jstor.org/stable/2285076
http://www.jstor.org/stable/4622315
https://EconPapers.repec.org/RePEc:eee:econom:v:47:y:1991:i:2-3:p:197-205
https://EconPapers.repec.org/RePEc:eee:econom:v:47:y:1991:i:2-3:p:197-205
https://www.sciencedirect.com/science/article/pii/S0304393221000799
https://www.sciencedirect.com/science/article/pii/S0304393221000799
http://www.jstor.org/stable/1913621
http://dx.doi.org/10.1080/07474938.2011.607089


Econometrica, 57(5):1027–1057, 1989. ISSN 00129682, 14680262. URL http://www.

jstor.org/stable/1913622.

Scheidegger, Simon, and Ilias Bilionis. Machine learning for high-dimensional dynamic

stochastic economies. Journal of Computational Science, 33:68–82, 2019. ISSN 1877-7503.

doi: https://doi.org/10.1016/j.jocs.2019.03.004. URL https://www.sciencedirect.

com/science/article/pii/S1877750318306161.

Strebulaev, Ilya A., and Toni Whited. Dynamic models and structural estimation in

corporate finance. Foundations and Trends(R) in Finance, 6(1–2):1–163, 2012. URL

https://EconPapers.repec.org/RePEc:now:fntfin:0500000035.

Sutton, Richard S., and Andrew G. Barto. Introduction to Reinforcement Learning. MIT

Press, Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.

Sutton, Richard S., and Andrew G. Barto. Reinforcement Learning: An Introduction.

The MIT Press, second edition, 2018. URL http://incompleteideas.net/book/

the-book-2nd.html.

29

http://www.jstor.org/stable/1913622
http://www.jstor.org/stable/1913622
https://www.sciencedirect.com/science/article/pii/S1877750318306161
https://www.sciencedirect.com/science/article/pii/S1877750318306161
https://EconPapers.repec.org/RePEc:now:fntfin:0500000035
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html


Figure 1: Illustration of Algorithm

β distribution

Policy Iteration

π(Ξ;Θπ)

Simulation

{βi, Yi}

Estimation

β̂, std(β̂)

Block 1: GPU 1 Block 2: GPU 2 Block 3: GPU 3

This figure illustrates the algorithm presented in Section 3. Computations are described in Section 2. GPU
1, 2, and 3 refer to three NVIDIA V100 Tensor Core GPUs.

30



Figure 2: True vs. Fitted Moments

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
True Moment

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20
Fi

tt
ed

 M
om

en
t

 R2= 1.00

(a) Average investment rate

0.10 0.15 0.20 0.25 0.30 0.35
True Moment

0.10

0.15

0.20

0.25

0.30

0.35

Fi
tt

ed
 M

om
en

t

 R2= 1.00

(b) Average profitability rate

0.02 0.04 0.06 0.08 0.10 0.12
True Moment

0.02

0.04

0.06

0.08

0.10

0.12

Fi
tt

ed
 M

om
en

t

 R2= 1.00

(c) Average equity issuance

0.2 0.3 0.4 0.5 0.6 0.7
True Moment

0.2

0.3

0.4

0.5

0.6

0.7

Fi
tt

ed
 M

om
en

t

 R2= 1.00

(d) Auto-correlation of profitability

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
True Moment

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Fi
tt

ed
 M

om
en

t

 R2= 1.00

(e) Standard deviation of profitability
residuals

This figure shows scatter plots of data moments and moments implied by the moment function. We draw
1,000 parameter vectors from a uniform distribution and discard those in which the implied equity issuance
is lower than 0.01. The x-axis of each panel represents the data moments implied by the true parameter
vectors and the y-axis represents the moments obtained by applying the moment network to the same set
of parameter vectors. The run time for each parameter vector is 15 minutes. We set the batch size to 512,
the replay buffer size to 50,000, the dataset size to 5,000, the learning rate to 1e−3, and an epoch to 100
iterations. Our neural networks have 2 hidden layers, each with 256 nodes. We use a Sigmoid Linear Unit
(SiLU) activation function, defined as silu(x) = xσ(x), where σ is the sigmoid function.

31



Figure 3: True vs. Estimated Parameters

0.30 0.35 0.40 0.45 0.50 0.55
True Parameter

0.30

0.35

0.40

0.45

0.50

0.55

0.60
E

st
im

at
ed

 P
ar

am
et

er

 R2= 1.00

(a) Curvature of profit function (α)

0.02 0.04 0.06 0.08 0.10 0.12
True Parameter

0.02

0.04

0.06

0.08

0.10

0.12

E
st

im
at

ed
 P

ar
am

et
er

 R2= 1.00

(b) Depreciation rate (δ)

0.00 0.05 0.10 0.15 0.20 0.25
True Parameter

0.00

0.05

0.10

0.15

0.20

0.25

E
st

im
at

ed
 P

ar
am

et
er

 R2= 0.99

(c) Equity issuance cost (λ)

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
True Parameter

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

E
st

im
at

ed
 P

ar
am

et
er

 R2= 1.00

(d) Auto-corr. of productivity (ρ)

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
True Parameter

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

E
st

im
at

ed
 P

ar
am

et
er

 R2= 1.00

(e) Productivity innovation (σz)

This figure shows scatter plots of true and estimated parameters. We draw 1,000 parameter vectors from a
uniform distribution and discard those in which the implied equity issuance is lower than 0.01. The x-axis
of each panel shows values of the true parameter and the y-axis represents parameter estimates obtained
using our method when targeting the moments implied by each true parameter vector. The solid black line
is the 45-degree line. The run time for each parameter vector is 15 minutes. We set the batch size to 512,
the replay buffer size to 50,000, the dataset size to 5,000, the learning rate to 1e−3, and an epoch to 100
iterations. Our neural networks have 2 hidden layers, each with 256 nodes. We use a Sigmoid Linear Unit
(SiLU) activation function, defined as silu(x) = xσ(x), where σ is the sigmoid function.

32



Figure 4: Minimum Loss Function: Known Parameters

0.1 0.2 0.3 0.4 0.5 0.6

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

lo
ss

(a) Version 1: σz

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

lo
ss

(b) Version 1: λ

0.1 0.2 0.3 0.4 0.5 0.6

0.001

0.002

0.003

0.004

0.005

0.006

0.007

lo
ss

(c) Version 2: σz

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.001

0.002

0.003

0.004

0.005

0.006

0.007

lo
ss

(d) Version 2: λ

This figure shows the minimum loss function as a function of productivity innovation σz (Panels 4a and 4c)
and equity issuance cost λ (Panels 4b and 4d) for two different true parameter vectors. In version 1 (Panels
4a and 4b), the true parameter vector is [α, δ, λ, ρ, σz] = [0.484, 0.110, 0.040, 0.635, 0.370]. In version
2 (Panels 4c and 4d), the true parameter vector is [α, δ, λ, ρ, σz] = [0.362, 0.106, 0.095, 0.846, 0.140].
In each panel, we use a global optimization routine to minimize the loss function given by Eq. (18), the
distance between model and data moments, for all parameters other than the one denoted in the caption.
We compute the minimum loss function for the network parameters of the last ten iterations and compute
the mean and standard deviation across these ten versions. We show two standard deviation bands along
with means. The red vertical line denotes the true parameter value. The run time for each parameter vector
is 15 minutes. We set the batch size to 512, the replay buffer size to 50,000, the dataset size to 5,000, the
learning rate to 1e−3, and an epoch to 100 iterations. Our neural networks have 2 hidden layers, each with
256 nodes. We use a Sigmoid Linear Unit (SiLU) activation function, defined as silu(x) = xσ(x), where σ
is the sigmoid function.

33



Figure 5: Endogenous sampling

0.1 0.2 0.3 0.4 0.5 0.6
z

0.0

0.0

0.1

0.2

0.2

0.3

0.3

(a) Initial sample

0.1 0.2 0.3 0.4 0.5 0.6
z

0.0

0.0

0.1

0.2

0.2

0.3

0.3

(b) Final sample

This figure illustrates our endogenous sampling method for two parameters, the equity issuance cost (λ)
and the productivity innovation (σz). Each blue dot is an observation in the sample and the estimated
parameters are shown in orange. Panel 5a shows the initial sample, described in the initialization step of
the algorithm in Section 3. Panel 5b shows the sample after running the algorithm for 15 minutes.

34



Figure 6: Time to Solution

0 100 200 300 400 500 600
minutes

0.35

0.40

0.45

0.50

0.55

0.60
This paper
Value iteration + differential evolution

(a) Curvature of profit function (α)

0 100 200 300 400 500 600
minutes

0.02

0.04

0.06

0.08

0.10

This paper
Value iteration + differential evolution

(b) Depreciation rate (δ)

0 100 200 300 400 500 600
minutes

0.00

0.05

0.10

0.15

0.20

0.25

0.30
This paper
Value iteration + differential evolution

(c) Equity issuance cost (λ)

0 100 200 300 400 500 600
minutes

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

This paper
Value iteration + differential evolution

(d) Auto-corr. of productivity (ρ)

0 100 200 300 400 500 600
minutes

0.1

0.2

0.3

0.4

0.5

0.6

This paper
Value iteration + differential evolution

(e) Productivity innovation (σz)

This figure shows estimated parameter values on the y-axis and run time in minutes on the x-axis, for
both our estimation method (blue line) and the standard approach of solving the model with value function
iteration and estimating parameters using differential evolution (orange line). Each point in either the blue
or the orange line is the average over five runs with different seeds and different random initial conditions.
We plot the average parameter value as well as bands of plus or minus one standard deviation. We run our
method for 30 minutes and differential evolution for 10 hours.

35



Figure 7: Minimum Loss Function: Data

0.30 0.35 0.40 0.45 0.50 0.55 0.60

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

lo
ss

(a) Curvature of profit function (α)

0.02 0.04 0.06 0.08 0.10 0.12

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

lo
ss

(b) Depreciation rate (δ)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

lo
ss

(c) Equity issuance cost (λ)

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

lo
ss

(d) Auto-corr. of productivity (ρ)

0.1 0.2 0.3 0.4 0.5 0.6

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

lo
ss

(e) Productivity innovation (σz)

This figure shows the minimum loss function for all parameters, with each panel corresponding to a different
parameter. In each panel, we use a global optimization routine to minimize the loss function given by Eq.
(18), the distance between model and data moments, for all parameters other than the one denoted in the
caption. We compute the minimum loss function for the network parameters of the last ten iterations and
compute the mean and standard deviation across these ten versions. We show two standard deviation bands
along with means. The red vertical line denotes the estimated parameter value. We set the batch size to
512, the replay buffer size to 50,000, the dataset size to 5,000, the learning rate to 1e−3, and an epoch to
100 iterations. Our neural networks have 2 hidden layers, each with 256 nodes. We use a Sigmoid Linear
Unit (SiLU) activation function, defined as silu(x) = xσ(x), where σ is the sigmoid function. We run the
algorithm for 15 minutes.

36



Figure 8: Minimum Loss Function: Local vs Global

0.30 0.35 0.40 0.45 0.50 0.55 0.60

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

al
ph

a
Global
Local

(a) Curvature of profit function (α)

0.02 0.04 0.06 0.08 0.10 0.12

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

de
lta

Global
Local

(b) Depreciation rate (δ)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

la
m

bd
a

Global
Local

(c) Equity issuance cost (λ)

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

rh
o

Global
Local

(d) Auto-corr. of productivity (ρ)

0.1 0.2 0.3 0.4 0.5 0.6

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

si
gm

a_
z

Global
Local

(e) Productivity innovation (σz)

This figure shows the minimum loss function for all parameters, with each panel corresponding to a different
parameter. In each panel, we use a global optimization routine to minimize the loss function given by Eq.
(18), the distance between model and data moments, for all parameters other than the one denoted in the
caption. We compute the minimum loss function for the network parameters of the last ten iterations and
compute the mean and standard deviation across these ten versions. We show two standard deviation bands
along with means. The red vertical line denotes the estimated parameter value. We set the batch size to
512, the replay buffer size to 50,000, the dataset size to 5,000, the learning rate to 1e−3, and an epoch to
100 iterations. Our neural networks have 2 hidden layers, each with 256 nodes. We use a Sigmoid Linear
Unit (SiLU) activation function, defined as silu(x) = xσ(x), where σ is the sigmoid function. We run the
algorithm for 15 minutes.

37



Table 1: Moments Estimates

Data Moments Model-Implied Moments

Mean(investment/assets) 0.078 0.078

Mean(profit/assets) 0.127 0.126

Mean(equity issuance/assets) 0.042 0.043

Serial corr of profit/assets 0.517 0.521

Std. dev. of profit/assets residuals 0.081 0.081

Notes: This table reports data and model-implied moments. Data moments are based on a sample of non-

financial firms from Compustat between 1970 and 2019. Model-implied moments are from a simulation of

16,384 firms over 250 time periods. We solve the model, approximate moments, and estimate parameters

using the algorithm described in Section 3. We set the batch size to 512, the replay buffer size to 50,000, the

dataset size to 5,000, the learning rate to 1e−3, and an epoch to 100 iterations. Our neural networks have

2 hidden layers, each with 256 nodes. We use a Sigmoid Linear Unit (SiLU) activation function, defined as

silu(x) = xσ(x), where σ is the sigmoid function. We run the algorithm for 15 minutes.

38



Table 2: Parameter Estimates

α δ λ ρ σz

This paper 0.428 0.038 0.093 0.823 0.541

(0.0020) (0.0003) (0.0015) (0.0043) (0.0023)

VFI + differential evolution 0.423 0.038 0.093 0.824 0.539

(0.0023) (0.0003) (0.0022) (0.0042) (0.0021)

Notes: This table reports estimated parameters, with standard deviations in parenthesis. Estimates are based on

a sample of non-financial firms from Compustat between 1970 and 2019. α is the curvature of the profit function,

δ is the depreciation rate, λ is the cost of equity issuance, ρ is the autocorrelation of productivity, and σz is the

standard deviation of the productivity innovation. The first row shows estimates obtained using the algorithm

described in Section 3 and the second row shows estimates obtained by solving the model using value function

iteration and estimating parameters with differential evolution. We set the batch size to 512, the replay buffer

size to 50,000, the dataset size to 5,000, the learning rate to 1e−3, and an epoch to 100 iterations. Our neural

networks have 2 hidden layers, each with 256 nodes. We use a Sigmoid Linear Unit (SiLU) activation function,

defined as silu(x) = xσ(x), where σ is the sigmoid function. We run our algorithm for 15 minutes and differential

evolution for 24 hours.

39


